
International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

IMPROVING THE EFFICIENCY OF QUERY
RESPONSE AND UNAVAILABILITY ISSUES IN
A SENSOR NETWORK OF MOBILE DEVICES

D N Kartheek, G Amarnath, P Venkateswarlu Reddy, S Srujan

Abstract

 Sensors are now-a-days finding wide applicability in many kinds of electronic devices. Mobile phones turn out to be a best way to deploy them to
provide wide coverage and keep the network live for an extended period. The limitation for embedding sensor devices in mobile phones, the mobility
issue was successfully dealt to an extent in [1] by using virtual sensors. Also, certain areas of interest need not be frequently sampled as the sampled

data does not show a significant change. This was used as an advantage to reduce the end-end latencies by minimizing expensive data collection from
sensors. It uses the techniques to cache aggregate results of samples and one-pass sampling to utilize cached data.

 We propose that the end-end latency can be further reduced and the availability of the nodes increased by taking advantage of the virtual sensor
layer and employing caching in the same layer. One example can be an air pureness monitoring device embedded in cell phones. The results are com-
puted by simulating an adequate number of samples and would give the efficiency of the technique along with the latency.

Keywords- caching, query latency, sampling, mobile phones, virtual sensor node.

—————————— ——————————

1 INTRODUCTION

 We have known for a long time now that mobile phones can

be used as sensor devices. These devices have inbuilt audio,

video sensors and also other sensing devices can be connected

to the device using Bluetooth. The miniaturization of

sensing devices may enable them to be embedded within the

mobile phones.

 Mobile phones have primarily two sensors: a camera and

a microphone. It would be an efficient use of this sensor infra-

structure if we could build a sensor network that exploits the

deployed base of millions of mobile phones worldwide. Here,

mobility has been a primary concern in all such networks

which render the network inefficient and useless at times. For

example, sampling a desired region with a given device be-

comes difficult due to the uncontrolled nature of device mo-

tion. [1] employs the concept to make use of a data centric ab-

straction to deal with this problem. Introducing a layer of stat-

ic virtual nodes corresponding to the sampled data locations

obviates the need for treating the physical devices as our sen-

sor nodes. Queries can be directed to the virtual sensors,

which accumulate the data samples from the physical devices.

 Again, Query processing is an expensive task, particularly

if we wish to have live data as we need to sample data a num-

ber of times. [2] uses COLR-Tree that, in part deals with using

cached data when a node is unavailable. COLR-Tree uses two

techniques to optimize end-to-end latencies of user’s queries

by minimizing expensive data collection from sensors. First, it

uses a new technique for caching aggregate results computed

over sensor samples with different expiry times. Second, it

incorporates an efficient one-pass sampling algorithm with its

range lookup to utilize cached data to compensate for occa-

sional unavailability of sensors.

 We propose to make use of caching to effectively deal with

sensor unavailability in our implementation of the sensor

network that we build using mobile phones as sensor nodes

while simultaneously dealing with the mobility problem by

using a layer of virtual sensor nodes. This technique can be

employed over the deployed base of mobile phones in a city

which have embedded atmospheric air monitoring sensors

that measure the carbon compound content in the air and re-

lay it to the base. Based on the readings, the concerned can

have certain neutralizing elements released into the air in the

air. This is particularly useful in large cities with huge traffic

that spike the carbon levels. We consider a temperature sensor

system to implement the idea and provide the results.

 The advantages in using this mechanism to measure tem-

perature are highly advantageous as 1) the temperature at

numerous points in a part of a continent can be known and

irregular temperature patterns can be studied. 2) Given tem-

perature rise in the heart of the city is largely due to toxic

heated gases from the vehicles, we can make a pattern of the

traffic and thereby assist drivers to choose the best routes to

their destinations by sending this pattern over to their GPS

devices on request. 3) It is efficient to make use of the existing

systems, the mobile devices rather than deploying new sensor

systems that may increase the cost of implementation. This

system can be made available on a web portal that can host

data generated by millions of sensors and lets users query live

data directly on the map.

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 The following section gives an insight into the proposed

architecture and provides details of the nodes and different

layers. The third section deals with each layer in detail and

describes how the entire system operates. The implementation

section

describes the constraints imposed on each functional compo-

nent and furnishes the results. Conclusion has points for fu-

ture work and improvements to the current system.

II. SYSTEM ARCHITECTURE

 In this system, sensor nodes are accessed not directly by

their node ID’s or network addresses. As in *1+, we employ a

data abstraction layer that effectively obviates the need for an

overhead of storing network addresses or node ID’s. That is, a

layer of virtual sensor nodes is superimposed over the actual

physical network and the data obtained from the virtual sen-

sor corresponds to the data collected by it from the physical

devices in its supposed coverage area. These virtual nodes,

implemented in the network infrastructure are deemed static.

The applications are the layer directly above the virtual sensor

layer and direct their queries to the virtual sensors instead of

the physical devices.

 The virtual sensor nodes are supposed to hold the cache

for the respective regions. The caches are updated based on

requirement and is decided by the software.

III. DESCRIPTION

 The architecture described above strives to increase the

availability of the physical devices and also to minimize the

query latency. The first objective is achieved is by using the

static virtual sensor layer and utilizing data from cache. Query

latency can be reduced by limiting repeated expensive data

gathering and using the already sampled data.

 The samples collected from the devices have a location

stamp on them and hence are identified to be under a particu-

lar sensor node. This concept maintains that the location of a

virtual sensor node is static and all data gathered will be

grouped under the respective sensor node.

 As in [1], all applications query the virtual sensor layer

directly instead of querying the physical devices that greatly

reduces the query latency compared to traditional query me-

chanisms. Also the need for maintaining the node ID’s has

been eliminated. This follows as it suffices to have a minimum

number of sensor devices to provide with the samples re-

quired.

 To deal with the problems of unavailability and query

latency, we introduce a cache corresponding to each virtual

sensor. This cache keeps track of the samples gathered from

the physical devices along with the time stamps. When a vir-

tual node has no data due to unavailability of physical devic-

es, the system is still live and working with the cached data

stored. This works with the same principle as in [2], by allow-

ing a time out after which the data is considered stale. Similar-

ly, the mechanism of slot-cache that makes use of timestamps

to group efficiently the data collected and respond to the que-

ries based on freshness of the data is inherited from [2].

 COLR-Tree [2] needs to aggregate data in different spatial

granularities. The assumption was that the locations of sensors

do not change often, allowing COLR-Tree to be built bottom-

up, in batch mode, by iteratively computing sensor clusters

with a k-means algorithm [4] to construct a hierarchy. We pe-

riodically reconstruct the COLR-Tree index to reflect any

change in sensor locations. Our proposal does not require any

usage or reconstruction of the COLR-Tree as we do not oper-

ate directly on mobile physical nodes. But these are used

merely as tools for information. This raw data is stored and

processed when requested if it still is not stale. In case that it

is, we will have the only option of going with collecting data at

that time, which would definitely increase the query latency. A

possible work around would be to populate the cache more

frequently to prevent the above situation. The frequency

should be greater than the frequency at which the queries flow

in or in other way, the interval between successive sampling

events should be less than the timeout. The frequent sampling

would consume the battery in the sensor devices quickly as

sampling involves sensing the data formatting it and relaying

it to the base. This would fail us in increasing the lifetime of

the devices and ultimately the network. So, as each sample has

a separate timeout, we retain the values from samples that are

within the timeout interval but expunge the timed out values

and replace them with fresh values.

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 The use of caching will see a significant drop in band-

width utilized as many queries can be replied with the data in

the cache. The cache and timeout concepts obviate the need for

sampling the physical devices for each query also saving pow-

er for the devices and increasing life time of the network. The

physical devices time stamp the data that is considered stale

after a predetermined time out, also set by the device. We pro-

pose to include a mechanism that tracks the incidence of que-

ries to a particular virtual node and in case it is higher, then a

method of automatic sampling with an interval of ∆t, where t

is the time before the sampled data is rendered stale. This is

implemented at the network infrastructure same as the virtual

layer. It records the number of queries per unit time and com-

pares it with the timeout of the aggregate data in the node. A

suitable decision is implemented to be carried out either to

sample the region or to proceed without any action. The

choice is made not to sample the region if the frequency of

queries is much greater than the sampling frequency of the

network. Again, in the case that a decision to sample has been

made, an enhancement to traditional sampling method can be

that depending on the query frequency and the time left be-

fore the data is rendered useless, we can schedule the sam-

pling to occur in intervals of multiples of timeout ‘t’. In the

case that a query comes in before a sample is taken, the tradi-

tional process of responding by collecting the data after the

query is received is followed. This form of automated query-

ing ensures the freshness of the data always at least at the

busy nodes. Thus, accuracy and integrity of query response is

maintained.

IV. IMPLEMENTATION

 The network has been simulated and the following rules

are employed in simulating. We considered four rectangular

cells each with a virtual sensor at its center. All the nodes in a

network cell transmit the sampled data to the base. The base is

in fact the virtual node implemented in the network infra-

structure.

 We have mobile devices spread over all the four rectangu-

lar cells with finite boundaries. The mobiles can change posi-

tion at any time. Initially, the mobiles are assumed to have

been sampled and data stored in the cache. Although much

better applications exist, just for the ease of storing and

processing, the data sampled is assumed to be temperature.

The temperature samples are ranged in between 35 and 39.

 Data sampled is refreshed, i.e. the cache is updated every

few seconds and the energy of nodes is checked to mark the

failed nodes. Each sensor node is implemented as a data struc-

ture with position and energy attributes. When sampled, the

location and sampled data are stored in the cache along with

the time at which the data is sampled. When queried, the data

cached is utilized in sending a response, provided a minimum

number of ‘fresh’ samples are available in the cache. The pa-

rameter ‘fresh’ is tagged to a sample if it was updated to the

cache no earlier than the timeout. The timeout here is fixed as

3 seconds. For each transmission of data by the sensor, the

energy is reduced by a certain predetermined amount.

 One-tenth of the total mobile nodes are programmed to

move by 0 to 3 units in space, along two axes. Corresponding-

ly, their position information is updated and in case of cell

crossover, its previous virtual node entry is deleted. No entry

is made in the new cell virtual node cache.

 When a query is made for a location in a particular cell, its

cache is first checked for the minimum number of samples. If

the desired number is not available, mobile nodes are sampled

to make the number of samples in the cache equal to eight and

then the response is sent using the updated cache.

 In comparing the query latency, we have compared the

best and worst case, the best case being when all the required

samples in the cache are fresh and the worst case being when

no node in the cache is fresh. The latter case requires the nodes

to be sampled again which might incur significant delay

which includes the transmission delay for cellular communica-

tion from mobile to base station. This delay at its maximum is

one second. We have taken into account this maximum.

The simulation takes the following steps.

Algorithm:

1) The cache is first filled up by sampling the nodes

along with the time.

2) The simulation time is started.

3) The timer is repeatedly checked for the time out and

cache is updated.

4) Position of ten percent of the total nodes is changed

and the update function is called to reflect these

changes.

5) The above steps are put in a loop which iterates if the

simulation time is yet to be reached.

6) The simulation ends when this condition is met.

 The experiment is carried out in Turbo C 3 using 100 nodes

and 40 nodes taking time out of 3 seconds. The best case times

are zero. The worst case time as discussed above is the maxi-

mum number (in worst case, cache is empty) of nodes to be

sampled multiplied by the maximum cellular latency, assum-

ing each node is sampled sequentially. We ran these experi-

ments on a laptop machine with an Intel Pentium M Processor

735, 1.24GB RAM and a Seagate ST94813A.

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

Latency

(sec)

1 2 3 4 5 6 7 8 9 10

No of cache nodes

Latency
100

40

 The above figure shows the latency of the query in its worst

case, tested using both 100 and 40 nodes. Over 50 samples are

collected for each configuration and the readings show the

latency largely depends on the cellular communication laten-

cy, i.e. maximum one second. A majority of the samples gave

latency in between 2 and 5 seconds with 9 as the maximum.

The cellular latency is taken randomly as either 0 or 1 for a

sample. We are in the process of gathering more samples to

show the increase in availability. The energy consumed during

transmission is taken into account and the same amount is

reduced for the node each time it is sampled. The increase in

network lifetime is also desired to be shown with larger set of

readings.

V. CONCLUSION

 We proposed a number of improvements that we claim

would compensate for the unavailability of mobile devices.

This is done by resorting to methods that assume a virtual

node in a virtual sensor layer amidst existing nodes. Again,

methods to improve query response efficiency have been

stated. Future work includes proposals to reduce latency of

the queries by improving over the stated methods. Ways to

reduce bandwidth utilization can also be pursued by methods

which take advantage of the cellular technologies and their

mode of data transfer.

VI. REFERENCES

[1] Aman Kansal, Feng Zhao. Location and Mobility in a sen-

sor network of mobile phones, ACM SIGMM 17th Internation-

al workshop on Network and Operating Systems Support for

Digital Audio & Video (NOSSDAV ’07), MSR-TR-2007-26.

[2] Yanif Ahmad, Suman Nath; 2008; COLR-Tree: Communica-

tion-Efficient Spatio-Temporal Indexing for a Sensor Data Web

Portal; ICDE 2008. IEEE 24th International Conference on Data

Engineering; Pages: 784-793.

*3+ ‚Microsoft’s plan to map the world in real time,‛ MIT

Technology Review, http://www.technologyreview.com/read\

article.aspx?id= 16781&ch=infotech, May 2006.

*4+ A. K. Jain, M. N. Murty, and P. J. Flynn, ‚Data clustering: a

review,‛ ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

